A comparison of the chemo- and radiotoxicity of thorium and uranium at different enrichment grades

Author:

Rump A.ORCID,Hermann C.,Lamkowski A.,Popp T.,Port M.

Abstract

AbstractUranium and thorium are heavy metals, and all of their isotopes are radioactive, so it is impossible to study chemical effects entirely independent of the radiation effects. In the present study, we tried to compare the chemo- and radiotoxicity of both metals, taking into account deterministic radiation damages reflected by acute radiation sickness and stochastic radiation damages leading to long-term health impairments (e.g., tumor induction). We made at first a literature search on acute median lethal doses that may be expected to be caused by chemical effects, as even acute radiation sickness as a manifestation of acute radiotoxicity occurs with latency. By simulations based on the biokinetic models of the International Commission on Radiological Protection and using the Integrated Modules for Bioassay Analysis software, we determined the amounts of uranium at different enrichment grades and thorium-232 leading to a short-term red bone marrow equivalent dose of 3.5 Sv considered to cause 50% lethality in humans. Different intake pathways for incorporation were considered, and values were compared to the mean lethal doses by chemotoxicity. To assess stochastic radiotoxicity, we calculated the uranium and thorium amounts leading to a committed effective dose of 200 mSv that is often considered critical. Mean lethal values for uranium and thorium are in the same order of magnitude so that the data do not give evidence for substantial differences in acute chemical toxicity. When comparing radiotoxicity, the reference units (activity in Bq or weight in g) must always be taken into account. The mean lethal equivalent dose to the red bone marrow of 3.5 Sv is reached by lower activities of thorium compared to uranium in soluble compounds. However, for uranium as well as thorium-232, acute radiation sickness is expected only after incorporation of amounts exceeding the mean lethal doses by chemotoxicity. Thus, acute radiation sickness is not a relevant clinical issue for either metal. Concerning stochastic radiation damages, thorium-232 is more radiotoxic than uranium if incorporating the same activities. Using weight units for comparison show that for soluble compounds, thorium-232 is more radiotoxic than low-enriched uranium in the case of ingestion but even more toxic than high-enriched uranium after inhalation or intravenous administration. For insoluble compounds, the situation differs as the stochastic radiotoxicity of thorium-232 ranges between depleted and natural uranium. For acute effects, the chemotoxicity of uranium, even at high enrichment grades, as well as thorium-232 exceeds deterministic radiotoxicity. Simulations show that thorium-232 is more radiotoxic than uranium expressed in activity units. If the comparison is based on weight units, the rankings depend on the uranium enrichment grades and the route of intake.

Funder

Sanitätsakademie der Bundeswehr

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Reference101 articles.

1. Agency for Toxic Substances and Disease Regitry (ATDSR) (2019) Toxicological profile for thorium. Agency for Toxic Substances and Disease Regitry, U.S. Department of Health and Human Services, Public Health Service, Atlanta

2. Ateshkadi A, Johnson CA, Oxton LL, Hammond TG, Bohenek WS, Zimmerman SW (1993) Pharmacokinetics of intraperitoneal, intravenous, and subcutaneous recombinant human erythropoietin in patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 21(6):635–642

3. Becker N, Liebermann D, Wesch H, Van Kaick G (2008) Mortality among Thorotrast-exposed patients and an unexposed comparison group in the German Thorotrast study. Multicenter Study. Eur J Cancer 44(9):1259–1268

4. Belbéoch R (1993) Comparaison de la radiotoxicité de l'uranium, du plutonium et du thorium. Publication du Groupement de Scientifiques pour l'Information sur l'Énergie Nucléaire (GSIEN). La Gazette nucléaire 129/130. https://gazettenucleaire.org/?url=/1993/129_130.html. Accessed 8 May 2022

5. Birchall A, Puncher M, Marsh JW, Davis K, Bailey MR, Jarvis NS (2007) IMBA professional plus: a flexible approach to internal dosimetry. Radiat Prot Dosim 125(1–4):194–197

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3