Global regularity and convergence to equilibrium of reaction–diffusion systems with nonlinear diffusion

Author:

Fellner KlemensORCID,Latos Evangelos,Tang Bao Quoc

Abstract

Abstract We study the boundedness and convergence to equilibrium of weak solutions to reaction–diffusion systems with nonlinear diffusion. The nonlinear diffusion is of porous medium type, and the nonlinear reaction terms are assumed to grow polynomially and to dissipate (or conserve) the total mass. By utilising duality estimates, the dissipation of the total mass and the smoothing effect of the porous medium equation, we prove that if the exponents of the nonlinear diffusion terms are high enough, then weak solutions are bounded, locally Hölder continuous and their $$L^{\infty }(\Omega )$$ L ( Ω ) -norm grows in time at most polynomially. In order to show convergence to equilibrium, we consider a specific class of nonlinear reaction–diffusion models, which describe a single reversible reaction with arbitrarily many chemical substances. By exploiting a generalised logarithmic Sobolev inequality, an indirect diffusion effect and the polynomial in time growth of the $$L^{\infty }(\Omega )$$ L ( Ω ) -norm, we show an entropy–entropy production inequality which implies exponential convergence to equilibrium in $$L^p(\Omega )$$ L p ( Ω ) -norm, for any $$1\le p < \infty $$ 1 p < , with explicit rates and constants.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mathematics (miscellaneous)

Reference43 articles.

1. D. G. Aronson, “The porous medium equation, Nonlinear diffusion problems (Montecatini Terme, 1985)”, Springer, Lecture Notes in Math. 1224, (1985) 1–46.

2. A. Barabanova, “On the global existence of solutions of a reaction–diffusion system with exponential nonlinearity”, Proc. Am. Math. Soc. 122, (1994) 827–831.

3. P. Baras, “Compacité de l’opérateur $$f\mapsto u$$ solution d’une équation non linéaire $$\frac{du}{dt} + Au \ni f$$.” C. R. Acad. Sci., Sér. A 286 (1978) 1113–1116.

4. S. Benachour, B. Rebiai, “Global classical solutions for reaction–diffusion systems with nonlinearities of exponential growth”, J. Evol. Equ. 10 (2010) 511–527.

5. N. Boudiba and M. Pierre, “Global existence for Coupled Reaction–Diffusion Systems”. J. Math. Anal. Appl. 250 (2000) 1–12.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3