Abstract
AbstractWe study semilinear hyperbolic Eq. (1.1). We derive an explicit solution representation for some nonlinear terms F and G. For other nonlinear terms, it is shown that the solutions of the equations are related with the variable coefficient sine-Gordon equation.
Funder
national research foundation of korea
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference13 articles.
1. Aktosun, T., Demontis, F., van der Mee, C.: Exact solutions to the sine-Gordon equation. J. Math. Phys. 51(12), 27 (2010). (123521)
2. Candy, T.: Global existence for an $$L^2$$ critical nonlinear Dirac equation in one dimension. Adv. Different. Equ. 16, 643–666 (2011)
3. Ercolani, N., Forest, M.G., McLaughlin, D.W.: Modulational stability of two-phase sine-Gordon wave trains. Stud. Appl. Math. 2, 91–101 (1985)
4. Di Garbo, A., Fronzoni, L.: Painlevé analysis of a variable coefficient sine-Gordon equation. Chaos 5(4), 690–692 (1995)
5. Hone, A.N.W.: Remarks on a variable-coefficient sine-Gordon equation. Appl. Math. Lett. 13(6), 83–84 (2000)