Nonlinear Stability of Equilibria in Hamiltonian Systems with Multiple Resonances without Interactions

Author:

Sierpe Claudio,Vidal Claudio

Abstract

AbstractIn this work, we advance in the study of the Lyapunov stability and instability of equilibrium solutions of Hamiltonian flows. More precisely, we study the nonlinear stability in the Lyapunov sense of equilibrium solutions in autonomous Hamiltonian systems with n-degrees of freedom, assuming the existence of two resonance vectors $$\textbf{k}^1$$ k 1 and $$\textbf{k}^2$$ k 2 without interaction ($$|\textbf{k}^1|\le |\textbf{k}^2|$$ | k 1 | | k 2 | ). We provide conditions to obtain a type of formal stability, called Lie stability. In particular, we need to normalize the Hamiltonian function to any arbitrary order, and our results take into account the sign of the components of the resonance vectors. Subsequently, we guarantee some sufficient conditions to obtain exponential stability in the sense of Nekhoroshev for Lie stable systems. In addition, we give sufficient conditions for the instability in the Lyapunov sense of the full system. For this, it is necessary to normalize the Hamiltonian function to an adequate order, and assuming that the components of at least one resonance vector change of sign.

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. Alaca, S., Williams, K.: Introductory Algebraic Number Theory. Cambridge. (2004)

2. Arnold, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Uspehi Mat. Nauk. 18, 91–192 (1963)

3. Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk. 18, 13–40 (1963)

4. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Encyclopaedia of Mathematical Sciences, 3rd ed. Springer, Berlin (2006)

5. Cárcamo, D., Palacián, J., Vidal, C., Yanguas, P.: Nonlinear stability of elliptic equilibria in Hamiltonian systems with exponential time estimates. Discrete Contin. Dyn. Syst. 41, 5183–5208 (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3