A Nonlinear PDE for Families of Orbits on a Given Surface

Author:

Kotoulas ThomasORCID

Abstract

AbstractWe study a nonlinear PDE which descibes monoparametric families of orbits on a certain surface produced by two-dimensional potentials. We face the following version of the direct problem of Newtonian Dynamics: Given a surface Sand a two-dimensional potential$$V = V(u,v)$$ V = V ( u , v ) , determine all the isoenergetic families of orbits$$f(u,v) = $$ f ( u , v ) = c ($$c = const.$$ c = c o n s t . ), that is, families of orbits which are traced by a test particle with the same preassigned value of the total energy $${\mathcal {E}} = {\mathcal {E}}_{0}$$ E = E 0 . We are interested especially in those orbits which are described by energy $${\mathcal {E}}_{0}$$ E 0 = 0. Thus, using Merten’s equation (ZAMM 61:252–253, 1981), we establish a new, nonlinear PDE for the “slope function” $$\gamma $$ γ = $${\frac{{f_{v}}}{{f_{u}}}}$$ f v f u which represents well the corresponding family of orbits $$f(u,v) = c$$ f ( u , v ) = c on the given surface S. We find two necessary and sufficient differential conditions, one for the potential V = V (uv) and another one for the slope function $$\gamma $$ γ , so that the above PDE has solution. Furthermore, we determine the general solution of the above PDE. Not only real but also complex potentials can produce these families of orbits on the given surface S. Several examples are offered.

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference25 articles.

1. Mertens, R.: On Szebehely’s equation for the potential energy of a particle describing orbits on a given surface. ZAMM. 61, 252–253 (1981)

2. Szebehely, V.: On the determination of the potential by satellite observations. In: Proverbio, G. (ed.) Proceeding of the International Meeting on Earth’s Rotation by Satellite Observation, pp. 31–35. The University of Cagliari, Bologna (1974)

3. Bozis, G.: Generalization of Szebehely’s equation. Celestial Mech. 29, 329–334 (1983). https://doi.org/10.1007/BF01228527

4. Bozis, G., Mertens, R.: On Szebehely’s Inverse Problem for a particle describing orbits on a given surface. ZAMM. 65, 383–384 (1985). https://doi.org/10.1002/zamm.19850650816

5. Puel, F.: Intrinsic formulation of the equation of Szebehely. Celestial Mech. 32, 209–216 (1984). https://doi.org/10.1007/BF01236600

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3