Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy

Author:

Afara Isaac O.ORCID,Sarin Jaakko K.,Ojanen Simo,Finnilä Mikko A. J.,Herzog Walter,Saarakkala Simo,Korhonen Rami K.,Töyräs Juha

Abstract

Abstract Introduction Assessment of cartilage integrity during arthroscopy is limited by the subjective visual nature of the technique. To address this shortcoming in diagnostic evaluation of articular cartilage, near infrared spectroscopy (NIRS) has been proposed. In this study, we evaluated the capacity of NIRS, combined with machine learning techniques, to classify cartilage integrity. Methods Rabbit (n = 14) knee joints with artificial injury, induced via unilateral anterior cruciate ligament transection (ACLT), and the corresponding contra-lateral (CL) joints, including joints from separate non-operated control (CNTRL) animals (n = 8), were used. After sacrifice, NIR spectra (1000–2500 nm) were acquired from different anatomical locations of the joints (nTOTAL = 313: nCNTRL = 111, nCL = 97, nACLT = 105). Machine and deep learning methods (support vector machines–SVM, logistic regression–LR, and deep neural networks–DNN) were then used to develop models for classifying the samples based solely on their NIR spectra. Results The results show that the model based on SVM is optimal of distinguishing between ACLT and CNTRL samples (ROC_AUC = 0.93, kappa = 0.86), LR is capable of distinguishing between CL and CNTRL samples (ROC_AUC = 0.91, kappa = 0.81), while DNN is optimal for discriminating between the different classes (multi-class classification, kappa = 0.48). Conclusion We show that NIR spectroscopy, when combined with machine learning techniques, is capable of holistic assessment of cartilage integrity, with potential for accurately distinguishing between healthy and diseased cartilage.

Funder

Academy of Finland

Finnish Cultural Foundation

Kuopio University Hospital VTR

Canadian Institutes of Health Research

The Killam Foundation

Canada Research Chair Program

Saastamoinen Foundation

Päivikki and Sakari Sohlberg Foundation

Sigrid Juselius Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3