Nonadiabatic quantum dynamics of the coherent excited state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline

Author:

Picconi DavidORCID

Abstract

Abstract The photoinduced nonadiabatic dynamics of the enol-keto isomerization of 10-hydroxybenzo[h]quinoline (HBQ) are studied computationally using high-dimensional quantum dynamics. The simulations are based on a diabatic vibronic coupling Hamiltonian, which includes the two lowest $$\pi \pi ^*$$ π π excited states and a $$n\pi ^*$$ n π state, which has high energy in the Franck–Condon zone, but significantly stabilizes upon excited state intramolecular proton transfer. A procedure, applicable to large classes of excited state proton transfer reactions, is presented to parametrize this model using potential energies, forces and force constants, which, in this case, are obtained by time-dependent density functional theory. The wave packet calculations predict a time scale of 10–15 fs for the photoreaction, and reproduce the time constants and the coherent oscillations observed in time-resolved spectroscopic studies performed on HBQ. In contrast to the interpretation given to the most recent experiments, it is found that the reaction initiated by $$1\pi \pi ^* \longleftarrow S_0$$ 1 π π S 0 photoexcitation proceeds essentially on a single potential energy surface, and the observed coherences bear signatures of Duschinsky mode-mixing along the reaction path. The dynamics after the $$2\pi \pi ^* \longleftarrow S_0$$ 2 π π S 0 excitation are instead nonadiabatic, and the $$n\pi ^*$$ n π state plays a major role in the relaxation process. The simulations suggest a mainly active role of the proton in the isomerization, rather than a passive migration assisted by the vibrations of the benzoquinoline backbone. Graphic Abstract

Funder

Deutsche Forschungsgemeinschaft

Universität Potsdam

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3