Abstract
AbstractZn–salophen complexes are a promising class of fluorescent chemosensors for nucleotides and nucleic acids. We have investigated, by means of steady state UV–Vis, ultrafast transient absorption, fluorescence emission and time dependent density functional theory (TD-DFT) the behavior of the excited states of a salicylidene tetradentate Schiff base (Sal), its Zn(II) coordination compound (Zn–Sal) and the effect of the interaction between Zn–Sal and adenosine diphosphate (ADP). TD-DFT shows that the deactivation of the excited state of Sal occurs through torsional motion, due to its rotatable bonds and twistable angles. Complexation with Zn(II) causes rigidity so that the geometry changes in the excited states with respect to the ground state structure are minimal. By addition of ADP to a freshly prepared Zn–Sal ethanol solution, a longer relaxation constant, in comparison to Zn–Sal, was measured, indicative of the interaction between Zn–Sal and ADP. After a few days, the Zn–Sal–ADP solution displayed the same static and dynamic behavior of a solution containing only the Sal ligand, demonstrating that the coordination of the ADP anion to Zn(II)leads to the demetallation of the Sal ligand. Fluorescence measurements also revealed an enhanced fluorescence at 375 nm following the addition of ADP to the solution, caused by the presence of 2,3-diamino naphthalene that is formed by demetallation and partial decomposition of the Sal ligand. The efficient fluorescence of this species at 375 nm could be selectively detected and used as a probe for the detection of ADP in solution.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献