Skip to main content
Log in

Optimized finite difference iterative scheme based on POD technique for 2D viscoelastic wave equation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This study develops an optimized finite difference iterative (OFDI) scheme for the two-dimensional (2D) viscoelastic wave equation. The OFDI scheme is obtained using a proper orthogonal decomposition (POD) method. It has sufficiently high accuracy with very few unknowns for the 2D viscoelastic wave equation. Existence, stability, and convergence of the OFDI solutions are analyzed. Numerical simulations verify efficiency and feasibility of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurtin, M. and Pipkin, A. A general theory of heat conduction with finite wave speeds. Archive for Rational Mechanics and Analysis, 31, 113–126 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lin, Y. P. A mixed boundary problem describing the propagation of disturbances in viscous media solution for quasi-linear equations. Journal of Mathematical Analysis and Applications, 135, 644–653 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Suveika, I. V. Mixed problems for an equation describing the propagation of disturbances in viscous media. Journal of Differential Equations, 19, 337–347 (1982)

    Google Scholar 

  4. Raynal, M. L. On Some Nonlinear Problems of Diffusion in Volterra Equations, Springer, Berlin (1979)

    MATH  Google Scholar 

  5. Yuan, Y. R. Finite difference method and analysis for three-dimensional semiconductor device of heat conduction. Science China Mathematics, 39, 21–32 (1996)

    MathSciNet  Google Scholar 

  6. Yuan, Y. R. and Wang, H. Error estimates for the finite element methods of nonlinear hyperbolic equations. Journal of System Science and Mathematical Science, 5, 161–171 (1985)

    Google Scholar 

  7. Cannon, J. R. and Lin, Y. A priori L2 error estimates for finite-element methods for nonlinear diffusion equations with memory. SIAM Journal on Numerical Analysis, 27, 595–607 (1999)

    Article  MATH  Google Scholar 

  8. Li, H., Zhao, Z. H., and Luo, Z. D. A space-time continuous finite element method for 2D vis- coelastic wave equation. Boundary Value Problems, 2016, 1–17 (2016)

    Article  Google Scholar 

  9. Sirovich, L. Turbulence, the dynamics of coherent structures. Quarterly of Applied Mathematics, 45, 561–590 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Holmes, P., Lumley, J. L., and Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  11. Cazemier, W., Verstappen, R. W. C. P., and Veldman, A. E. P. Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids, 10, 1685–1699 (1998)

    Article  Google Scholar 

  12. Ly, H. V. and Tran, H. T. Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quarterly of Applied Mathematics, 60, 631–656 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kunisch, K. and Volkwein, S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM Journal on Numerical Analysis, 40, 492–515 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, Z. D., Zhu, J., Wang, R. W., and Navon, I. M. Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model. Computer Methods in Applied Mechanics and Engineering, 196, 4184–4195 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo, Z. D., Chen, J., Navon, I. M., and Yang, X. Z. Mixed finite element formulation and error es- timates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. SIAM Journal on Numerical Analysis, 47, 1–19 (2008)

    Article  MathSciNet  Google Scholar 

  16. Luo, Z. D., Yang, X. Z., and Zhou, Y. J. A reduced finite difference scheme based on singu- lar value decomposition and proper orthogonal decomposition for Burgers equation. Journal of Computational and Applied Mathematics, 229, 97–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, P., Luo, Z. D., and Zhou, Y. J. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations. Applied Numerical Mathematics, 60, 154–164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, Z. D., Xie, Z. H., Shang, Y. Q., and Chen, J. A reduced finite volume element formulation and numerical simulations based on POD for parabolic problems. Journal of Computational and Applied Mathematics, 235, 2098–2111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo, Z. D., Du, J., Xie, Z. H., and Guo, Y. A reduced stabilized mixed finite element formula- tion based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. International Journal for Numerical Methods in Engineering, 88, 31–46 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo, Z. D., Li, H., Zhou, Y. J., and Xie, Z. H. A reduced finite element formulation and er- ror estimates based on POD method for two-dimensional solute transport problems. Journal of Mathematical Analysis and Applications, 385, 371–383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghosh, R. and Joshi, Y. Error estimation in POD-based dynamic reduced-order thermal modeling of data centers. International Journal of Heat and Mass Transfer, 57, 698–707 (2013)

    Article  Google Scholar 

  22. Stefanescu, R., Sandu, A., and Navon, I. M. Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations. International Journal for Numerical Methods in Fluids, 76, 497–521 (2014)

    Article  MathSciNet  Google Scholar 

  23. Luo, Z. D. and Teng, F. Reduced-order proper orthogonal decomposition extrapolating finite volume element format for two-dimensional hyperbolic equations. Applied Mathematics and Mechanics, 38, 289–310 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dimitriu, G., Stefanescu, R., and Navon, I. M. POD-DEIM approach on dimension reduction of a multi-species host-parasitoid system. Annals of the Academy of Romanian Scientists, 7, 173–188 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Luo, Z. D. A POD-based reduced-order finite difference extrapolating model for the non-stationary incompressible Boussinesq equations. Advances in Difference Equations, 2014, 1–18 (2014)

    MathSciNet  MATH  Google Scholar 

  26. An, J., Luo, Z. D., Li, H., and Sun, P. Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation. Frontiers of Mathematics in China, 10, 1025–1040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luo, Z. D. and Gao, J. Q. A POD-based reduced-order finite difference time-domain extrapolating scheme for the 2D Maxwell equations in a lossy medium. Journal of Mathematical Analysis and Applications, 444, 433–451 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Luo, Z. D., Jin, S. J., and Chen, J. A reduced-order extrapolation central difference scheme based on POD for two dimensional fourth-order hyperbolic equations. Applied Mathematics and Computation, 289, 396–408 (2016)

    Article  MathSciNet  Google Scholar 

  29. Zhang, W. S. Finite Difference Methods for Partial Differential Equations in Science Computation, Higher Education Press, Beijing (2006)

    Google Scholar 

  30. Chung, T. Computational Fluid Dynamics, Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  31. He, Y. N. and Sun, W. W. Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM Journal on Numerical Analysis, 45, 837–869 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. He, Y. N. The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data. Mathematics of Computation, 77, 2097–2124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Luo.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11671106) and the Fundamental Research Funds for the Central Universities (No. 2016MS33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Luo, Z. Optimized finite difference iterative scheme based on POD technique for 2D viscoelastic wave equation. Appl. Math. Mech.-Engl. Ed. 38, 1721–1732 (2017). https://doi.org/10.1007/s10483-017-2288-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2288-8

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation