Multiple internal resonances of rotating composite cylindrical shells under varying temperature fields

Author:

Liu Yunfei,Wang Jun,Hu Jiaxin,Qin Zhaoye,Chu Fulei

Abstract

AbstractComposite cylindrical shells, as key components, are widely employed in large rotating machines. However, due to the frequency bifurcations and dense frequency spectra caused by rotation, the nonlinear vibration usually has the behavior of complex multiple internal resonances. In addition, the varying temperature fields make the responses of the system further difficult to obtain. Therefore, the multiple internal resonances of composite cylindrical shells with porosities induced by rotation with varying temperature fields are studied in this paper. Three different types of the temperature fields, the Coriolis forces, and the centrifugal force are considered here. The Hamilton principle and the modified Donnell nonlinear shell theory are used to obtain the equilibrium equations of the system, which are transformed into the ordinary differential equations (ODEs) by the multi-mode Galerkin technique. Thereafter, the pseudo-arclength continuation method, which can identify the regions of instability, is introduced to obtain the numerical results. The detailed parametric analysis of the rotating composite shells is performed. Multiple internal resonances caused by the interaction between backward and forward wave modes and the energy transfer phenomenon are detected. Besides, the nonlinear amplitude-frequency response curves are different under different temperature fields.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3