Convolutional neural networks for relevance feedback in content based image retrieval

Author:

Putzu LorenzoORCID,Piras Luca,Giacinto Giorgio

Abstract

AbstractGiven the great success of Convolutional Neural Network (CNN) for image representation and classification tasks, we argue that Content-Based Image Retrieval (CBIR) systems could also leverage on CNN capabilities, mainly when Relevance Feedback (RF) mechanisms are employed. On the one hand, to improve the performances of CBIRs, that are strictly related to the effectiveness of the descriptors used to represent an image, as they aim at providing the user with images similar to an initial query image. On the other hand, to reduce the semantic gap between the similarity perceived by the user and the similarity computed by the machine, by exploiting an RF mechanism where the user labels the returned images as being relevant or not concerning her interests. Consequently, in this work, we propose a CBIR system based on transfer learning from a CNN trained on a vast image database, thus exploiting the generic image representation that it has already learned. Then, the pre-trained CNN is also fine-tuned exploiting the RF supplied by the user to reduce the semantic gap. In particular, after the user’s feedback, we propose to tune and then re-train the CNN according to the labelled set of relevant and non-relevant images. Then, we suggest different strategies to exploit the updated CNN for returning a novel set of images that are expected to be relevant to the user’s needs. Experimental results on different data sets show the effectiveness of the proposed mechanisms in improving the representation power of the CNN with respect to the user concept of image similarity. Moreover, the pros and cons of the different approaches can be clearly pointed out, thus providing clear guidelines for the implementation in production environments.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved medical image inpainting using automatic multi-task learning driven deep learning approach;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

2. Gastric Cancer Image Classification: A Comparative Analysis and Feature Fusion Strategies;Journal of Imaging;2024-08-10

3. An Image-Retrieval Method Based on Cross-Hardware Platform Features;Applied System Innovation;2024-07-23

4. Performance Analysis of Query-Based Image Tagging Model in CBIR;2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT);2024-05-02

5. Research on Methods of Vehicle Image Retrieval in Expressway Scenarios Based on Deep Learning Neural Network;2024 8th International Conference on Robotics, Control and Automation (ICRCA);2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3