Thermal and wind devices for multisensory human-computer interaction: an overview

Author:

da Silveira Aleph CamposORCID,Rodrigues Eduardo C.,Saleme Estevao B.ORCID,Covaci AlexandraORCID,Ghinea GheorghitaORCID,Santos Celso A. S.ORCID

Abstract

AbstractIn order to create immersive experiences in virtual worlds, we need to explore different human senses (sight, hearing, smell, taste, and touch). Many different devices have been developed by both industry and academia towards this aim. In this paper, we focus our attention on the researched area of thermal and wind devices to deliver the sensations of heat and cold against people’s skin and their application to human-computer interaction (HCI). First, we present a review of devices and their features that were identified as relevant. Then, we highlight the users’ experience with thermal and wind devices, highlighting limitations either found or inferred by the authors and studies selected for this survey. Accordingly, from the current literature, we can infer that, in wind and temperature-based haptic systems (i) users experience wind effects produced by fans that move air molecules at room temperature, and (ii) there is no integration of thermal components to devices intended for the production of both cold or hot airflows. Subsequently, an analysis of why thermal wind devices have not been devised yet is undertaken, highlighting the challenges of creating such devices.

Funder

FAPES

CAPES#1

CAPES#2

CNPq

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. WearSway: Wearable Device to Reproduce Tactile Stimuli of Strong Wind through Swaying Clothes;SIGGRAPH Asia 2023 Emerging Technologies;2023-11-28

2. Merging Camera and Object Haptic Motion Effects for Improved 4D Experiences;2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR);2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3