Machine intelligence based hybrid classifier for spam detection and sentiment analysis of SMS messages
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-14641-5.pdf
Reference39 articles.
1. Abayomi-Alli O, Misra S, Abayomi-Alli A, Odusami M (2019) A review of soft techniques for SMS spam classification: methods, approaches and applications. Eng Appl Artif Intell 86:197–212
2. Agarwal B, Ramampiaro H, Langseth H, Ruocco M (2018) A deep network model for paraphrase detection in short text messages. Inf Process Manag 54(6):922–937
3. Arivoli PV, Chakravarthy T, Kumaravelan G (2017) Empirical evaluation of machine learning algorithms for automatic document classification. Int J Adv Res Comput Sci 8(8):299–302
4. Ay Karakuş B, Talo M, Hallaç İR, Aydin G (2018) Evaluating deep learning models for sentiment classification. Concurr Comput: Prac Exp 30(21):e4783
5. Barushka A, Hajek P (2020) Spam detection on social networks using cost-sensitive feature selection and ensemble-based regularized deep neural networks. Neural Comput Applic 32(9):4239–4257
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An integrated approach to Bayesian weight regulations and multitasking learning methods for generating emotion-based content in the metaverse;Expert Systems with Applications;2025-01
2. Extending limited datasets with GAN-like self-supervision for SMS spam detection;Computers & Security;2024-10
3. CatRevenge: towards effective revenge text detection in online social media with paragraph embedding and CATBoost;Multimedia Tools and Applications;2024-04-01
4. Telecommunication fraud resilient framework for efficient and accurate detection of SMS phishing using artificial intelligence techniques;Multimedia Tools and Applications;2024-03-28
5. OEC Net: Optimal feature selection-based email classification network using unsupervised learning with deep CNN model;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3