Abstract
The first simulation consists of a partial cut-out of gas flow canal between the heat exchanger fins. The simulation is steady state and mainly provides the information about the heat transfer coefficient and pressure drop across the canal. The second simulation takes into account the complete system of rotary heat exchanger. It is a transient simulation with moving mesh. Then the heat transfer and air flow parameters are presented as a porous volume with a heat transfer model and rotational multi zone interface conditions. This simplification is accurate providing much better performance as the number of mesh nodes is much smaller. The methodology of the model setup is presented.
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous),Mechanical Engineering,Biomedical Engineering,Information Systems,Control and Systems Engineering
Reference12 articles.
1. Alekseev, R. A., Kostukov, A. V., Makarov, A. R., & Merzlikin V. G. (2016). Simulation of Characteristics of Thermo-Hydraulic Process in Porous-Net Matrix of Rotary Heat Exchanger. Global Journal of Pure and Applied Mathematics, 12(4), 2829–2838.
2. Alonso, M. J., Lui, P., Mathisen, H. M., Ge, G., & Simonson, C. (2015). Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries. Building and Environment, 84, 228-237. https://doi.org/10.1016/j.buildenv.2014.11.014
3. Ansys. (n.d.). Program documentation.
4. Campo, A. (2012). A new 1-D composite lumped model facilitates the algebraic calculation of local temperatures, mean temperatures, and total heat transfer in simple bodies. Heat Mass Transfer, 48(9), 1495–1504. https://doi.org/10.1007/s00231-012-0994-x
5. Cengel, Y. A., & Ghajar, A. J. (2014). Heat and Mass Transfer: Fundamentals & Applications (5 ed.). McGraw-Hill.