INTELLIGENT DATA ANALYSIS ON AN ANALYTICAL PLATFORM

Author:

Darkenbayev DaurenORCID,Altybay Arshyn,Darkenbayeva Zhaidargul,Mekebayev NurbapaORCID

Abstract

The article discusses methods for processing unstructured data using an analytical platform. The authors analyze existing methods and technologies used to implement data processing and propose new approaches to solving this problem. The possibilities of using analytical platforms to solve the problem of processing source data are considered. The purpose of the article is to explore the possibilities of data import, partial preprocessing, missing data recovery, anomaly removal, spectral processing and noise removal. The authors explored how analytics platforms can function without a data warehouse, obtaining information from any other sources, but the most optimal way is to use them together, and how big data and unstructured data can be processed using an analytics platform. The authors solved a specific problem related to processing problems and proposed ways to solve them using an analytical platform. Particular attention is paid to a complete set of mechanisms that allows you to obtain information from any data source, carry out the entire processing cycle and display the results. Overall, the paper represents an important contribution to the development of raw data processing technologies. The authors plan to continue research in the field of processing big unstructured data.

Publisher

Politechnika Lubelska

Reference19 articles.

1. Abdiakhmetova Z. M.: Wavelet data processing in the problems of allocation in recovery well logging. Journal of Theoretical and Applied Information Technology 95(5), 2017, 1041–1047.

2. Altybay A. et al: Numerical Simulation and Parallel Computing of the Acoustic Wave Equation. AIP Conference Proceedings 3085(1), 2024, 020006.

3. Balakayeva G. et al: Development of an application for the thermal processing of oil slime in the industrial oil and gas sector. Informatics, Control, Measurement in Economy and Environmental Protection 13(2), 2023, 20–26.

4. Balakayeva G. et al: Digitalization of enterprise with ensuring stability and reliability. Informatics, Control, Measurement in Economy and Environmental Protection 13(1), 2023, 54–57 [http://doi.org/10.35784/iapgos.3295].

5. Balakayeva G., Darkenbayev D.: The solution to the problem of processing Big Data using the example of assessing the solvency of borrowers. Journal of Theoretical and Applied Information Technology 98(13), 2020, 2659–2670.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3