APPLICATION OF RESNET-152 NEURAL NETWORKS TO ANALYZE IMAGES FROM UAV FOR FIRE DETECTION

Author:

Stelmakh NataliiaORCID,Mandrovska SvitlanaORCID,Galagan RomanORCID

Abstract

Timely detection of fires in the natural environment (including fires on agricultural land) is an urgent task, as their uncontrolled development can cause significant damage. Today, the main approaches to fire detection are human visual analysis of real-time video stream from unmanned aerial vehicles or satellite image analysis. The first approach does not allow automating the fire detection process and contains a human factor, and the second approach does not allow detect the fire in real time. The article is devoted to the issue of the relevance of using neural networks to recognize and detect seat of the fire based on the analysis of images obtained in real time from the cameras of small unmanned aerial vehicles. This ensures the automation of fire detection, increases the efficiency of this process, and provides a rapid response to fires occurrence, which reduces their destructive consequences. In this paper, we propose to use the convolutional neural network ResNet-152. In order to test the performance of the trained neural network model, we specifically used a limited test dataset with characteristics that differ significantly from the training and validation dataset. Thus, the trained neural network was placed in deliberately difficult working conditions. At the same time, we achieved a Precision of 84.6%, Accuracy of 91% and Recall of 97.8%.

Publisher

Politechnika Lubelska

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3