Aplicación del modelo contribución jerárquica de igual riesgo con ADR latinoamericanos

Author:

Aragón Urrego DanielORCID

Abstract

Se presenta el modelo contribución jerárquica de igual riesgo (HERC–Hierarchical Equal Risk Contribution) propuesto por Raffinot que, al igual que el modelo propuesto por López de Prado, incorpora técnicas de machine learning para la optimización de portafolios de inversión, evitando algunas limitaciones del algoritmo CLA del modelo tradicional Media-Varianza de Markowitz (1952). Se realiza una aplicación del modelo HERC considerando métodos de enlazamiento Single y Ward para la agrupación jerárquica de un conjunto de activos que coti­zan en el NYSE y cuyas empresas están ubicadas en países latinoamericanos. Los resultados muestran que, para el caso de este conjunto de activos, la agrupación y jerarquización con el método de agrupamiento Ward se caracteriza por ser intrapaís, y muestra un número de clústeres más compacto frente al método de agrupamiento Single, así como mejores resultados en términos de rendimiento, volatilidad y coeficiente de Sharpe.

Publisher

Universidad Externado de Colombia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3