Abstract
Se presenta el modelo contribución jerárquica de igual riesgo (HERC–Hierarchical Equal Risk Contribution) propuesto por Raffinot que, al igual que el modelo propuesto por López de Prado, incorpora técnicas de machine learning para la optimización de portafolios de inversión, evitando algunas limitaciones del algoritmo CLA del modelo tradicional Media-Varianza de Markowitz (1952). Se realiza una aplicación del modelo HERC considerando métodos de enlazamiento Single y Ward para la agrupación jerárquica de un conjunto de activos que cotizan en el NYSE y cuyas empresas están ubicadas en países latinoamericanos. Los resultados muestran que, para el caso de este conjunto de activos, la agrupación y jerarquización con el método de agrupamiento Ward se caracteriza por ser intrapaís, y muestra un número de clústeres más compacto frente al método de agrupamiento Single, así como mejores resultados en términos de rendimiento, volatilidad y coeficiente de Sharpe.
Publisher
Universidad Externado de Colombia
Reference18 articles.
1. Bailey, D. y M. López de Prado (2012). The Sharpe Coeficiente Efficient Frontier. Journal of Risk, 15(2), 3-44. doi: 10.21314/jor.2012.255.
2. Bechis, L. (2020). Machine learning portfolio optimization: hierarchical risk parity and modern portfolio theory (Tesis de maestría), Libera Università Internazionale degli Studi Sociali Guido Carli. http://tesi.luiss.it/28022/1/709261_bechis _ luca.pdf
3. Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. doi: 10.2469/faj.v48.n5.28.
4. Clarke, R., De Silva, H. y Thorley, S. (2002). Portfolio constraints and the fundamental law of active management. Financial Analysts Journal, 58, 48-66. doi: 10.2469/ faj.v58.n5.2468.
5. Ledoit, O. y Wolf, M. (2004). A well-conditioned estimator for large-dimensional co-variance matrices. Journal of Multivariate Analysis, 88(2), 365-411. doi: 10.1016/ S0047-259X(03)00096-4.