CPW-Fed Wide Band Micro-machined Fractal Antenna with Band-notched Function

Author:

Kumar Ashwini,Pharwaha Amar

Abstract

In this paper, a straightforward yet effective design methodology to design wideband antenna with band notched characteristics has been proposed. Sierpinski carpet fractal geometry has been used to realize the antenna structure. Co-planar waveguide feed is used with a novel structure to achieve larger impedance bandwidth and band notching characteristics. Proposed antenna is designed using High Frequency Structure Simulator (HFSS) on a low cost FR4 substrate (ɛr=4.4) which resonates at three frequencies 1.51 GHz (1.19-2.06GHz), 6.53 GHz and 8.99 GHz (4.44-9.54 GHz) while a band is notched at 10.46 GHz (9.32-11.92 GHz). The proposed antenna has an electrical dimension of 0.36 λm× 0.24 λm, here λm is the wavelength with respect to lowest resonating frequency of the antenna. The resonating and radiation characteristics of the antenna are verified experimentally. Further, investigations are made to achieve easy integration of the antenna to the monolithic microwave integrated circuits. For that the antenna has been designed on micro-machined high index Silicon substrate which improve matching and gain of the antenna. The results of the micro-machined Sierpinski carpet fractal antenna are highly convincing over the conventional FR4 based antenna.

Publisher

River Publishers

Subject

Electrical and Electronic Engineering,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multilayer multiband hybrid fractal antenna for public safety and 5G Sub-6 GHz bands;Engineering Research Express;2024-08-29

2. Analysis of Wideband Minkowski Fractal Slot-Loaded Micro-machined Patch Antenna;2024 11th International Conference on Signal Processing and Integrated Networks (SPIN);2024-03-21

3. Four port MIMO antenna for IoT applications in public safety band and sub-6 GHz TDD 5G band;Engineering Research Express;2024-02-26

4. On the devolvement of fractal antenna for IoT applications;Engineering Research Express;2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3