Abstract
SummaryBackground: Discovery of clinical workflows to target for redesign using methods such as Lean and Six Sigma is difficult. VoIP telephone call pattern analysis may complement direct observation and EMR-based tools in understanding clinical workflows at the enterprise level by allowing visualization of institutional telecommunications activity.Objective: To build an analytic framework mapping repetitive and high-volume telephone call patterns in a large medical center to their associated clinical units using an enterprise unified communications server log file and to support visualization of specific call patterns using graphical networks.Methods: Consecutive call detail records from the medical center’s unified communications server were parsed to cross-correlate telephone call patterns and map associated phone numbers to a cost center dictionary. Hashed data structures were built to allow construction of edge and node files representing high volume call patterns for display with an open source graph network tool.Results: Summary statistics for an analysis of exactly one week’s call detail records at a large academic medical center showed that 912,386 calls were placed with a total duration of 23,186 hours. Approximately half of all calling called number pairs had an average call duration under 60 seconds and of these the average call duration was 27 seconds.Conclusions: Cross-correlation of phone calls identified by clinical cost center can be used to generate graphical displays of clinical enterprise communications. Many calls are short. The compact data transfers within short calls may serve as automation or re-design targets. The large absolute amount of time medical center employees were engaged in VoIP telecommunications suggests that analysis of telephone call patterns may offer additional insights into core clinical workflows.Citation: Rucker DW. Using telephony data to facilitate discovery of clinical workflows. Appl Clin Inform 2017; 8: 381–395 https://doi.org/10.4338/ACI-2016-11-RA-0191
Subject
Health Information Management,Computer Science Applications,Health Informatics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献