Towards Prevention of Acute Syndromes

Author:

Thongprayoon C.,Pickering B.W.,Akhoundi A.,Wilson G.,Pieczkiewicz D.,Herasevich V.,Ahmed A.

Abstract

SummaryBackground: Identifying patients at risk for acute respiratory distress syndrome (ARDS) before their admission to intensive care is crucial to prevention and treatment. The objective of this study is to determine the performance of an automated algorithm for identifying selected ARDS predis-posing conditions at the time of hospital admission.Methods: This secondary analysis of a prospective cohort study included 3,005 patients admitted to hospital between January 1 and December 31, 2010. The automated algorithm for five ARDS pre-disposing conditions (sepsis, pneumonia, aspiration, acute pancreatitis, and shock) was developed through a series of queries applied to institutional electronic medical record databases. The automated algorithm was derived and refined in a derivation cohort of 1,562 patients and subsequently validated in an independent cohort of 1,443 patients. The sensitivity, specificity, and positive and negative predictive values of an automated algorithm to identify ARDS risk factors were compared with another two independent data extraction strategies, including manual data extraction and ICD-9 code search. The reference standard was defined as the agreement between the ICD-9 code, automated and manual data extraction.Results: Compared to the reference standard, the automated algorithm had higher sensitivity than manual data extraction for identifying a case of sepsis (95% vs. 56%), aspiration (63% vs. 42%), acute pancreatitis (100% vs. 70%), pneumonia (93% vs. 62%) and shock (77% vs. 41%) with similar specificity except for sepsis and pneumonia (90% vs. 98% for sepsis and 95% vs. 99% for pneumonia). The PPV for identifying these five acute conditions using the automated algorithm ranged from 65% for pneumonia to 91 % for acute pancreatitis, whereas the NPV for the automated algorithm ranged from 99% to 100%.Conclusion: A rule-based electronic data extraction can reliably and accurately identify patients at risk of ARDS at the time of hospital admission.Citation: Ahmed A, Thongprayoon C, Pickering BW, Akhoundi A, Wilson G, Pieczkiewicz D, Herasevich V. Towards prevention of acute syndromes: Electronic identification of at-risk patients during hospital admission. Appl Clin Inf 2014; 5: 58–72http://dx.doi.org/10.4338/ACI-2013-07-RA-0045

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3