Prospects of Astrogeology and Astrobiology researches in India: Ladakh as an example

Author:

Phartiyal Binita,D.A. Clarke Jonathan,Pandey Siddharth

Abstract

Ladakh sector of the Trans–Himalayan region in India shows a strong fidelity as an analogue of Mars. It is dry, cold arid desert, has abundant rocky ground with dust devils, loose rock blanketing the mountain slopes, segregated ground ice/permafrost, rock glaciers, sand dunes, drainage networks, catastrophic flooding sequences, making it geomorphologically similar as an early Mars analogue. Even for the geochemical fidelity in Ladakh volcanic rocks (basalt); serpentinites, saline lakes, active and fossil hydrothermal systems exist which can give a clue to the processes and chemistry of the Martian grounds. As far as exobiological fidelity is concerned we have permafrost (evidence of water in the past), increased UV and cosmic radiation flux, reduced atmospheric pressure, hot springs (some rich in boron). Hence, Ladakh environment, characters by freezing temperatures, limited precipitation, open water in rivers and lakes, comparatively low atmospheric pressure, thermal springs, and relatively high ultraviolet flux, is an analogue for the Noachian epoch on Mars. Ladakh is surely a treat for geographers, geologists and in recent years also for the astrogeologist’s and astrobiologist’s as well, with its lunar/martian landscapes; exposures of sedimentary, metamorphic and igneous rock types; glacial, fluvial lacustrine sediments and active climatic and tectonic processes. This article demonstrated the many opportunities for Mars analogue research, mentioning the sedimentary deposits of Ladakh with examples from the variety of sediment exposures along the Indus River and explores possibilities for the future astro work sites–be it the landforms carved from the glacial, fluvial, lacustrine and aeolian deposits to study the sedimentary processes, the hyper saline lakes, the permafrost and the hot springs to study the extremophiles or the million year emplacements of the rocks to study the geochemical constituents.

Publisher

Birbal Sahni Institute of Palaeosciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3