Geospatial Monitoring on Land Surface Temperature and Vegetation Dynamics: A Case of a City Area in Khulna, Bangladesh

Author:

HAQUE MD. NAZMUL,RAHMAN KHANAM NOWRIN,NANJIBA MEHNAZ

Abstract

Land surface temperature and vegetation cover are two important parameters to evaluate the climate change and environmental condition. The current study is carried out in respect of monitoring the changing phenomena of climate and environment. The area selected to conduct the study was ward number 1, 2 and 3 of Khulna City Corporation), from the third largest city of Bangladesh. This study is corresponding through the calculation of Land Surface Temperature (LST) and Normalized Differential Vegetation Index (NDVI) for two different years, 2010 and 2018. LST and NDVI are observed to realize the association between surface temperature and amount of vegetation. With the help of ArcGIS 10.5, LST and NDVI calculations are done using Landsat 5 Thermal Mapper, Landsat 8 Operational Land Imager and Thermal Infrared Sensor images (for 2010 and 2018, respectively) collected from USGS Earth Explorer. The findings of the study specify that the highest temperature in 2018 is 32.5˚C in ward 2 and in 2010 it was 27.5˚C in ward 3, though the overall vegetation amount decreased in 2018, About 18, 900 square meter of very low canopy area has increased in ward 3 from the period of 2010 to 2018 and in the same time 35, 100 square meter of low canopy area has been decreased for the overall study area. However, parts of the study area of ward no. 3 had faced a significant increase in vegetation cover which is the cause of low temperature compared to ward 1 and 2 in 2018.

Publisher

UNIMAS Publisher

Reference32 articles.

1. Anandababu, D., Purushothaman, B. M., & Suresh Babu, S. (2018). Estimation of Land Surface Temperature using LANDSAT 8 Data. International Journal of Advance Research, 4(2), 177-186.

2. Avdan, U., & Jovanovska, G. (2016). Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. (G. Tian, Ed.) Journal of Sensors, 2016. Retrieved from

3. http://dx.doi.org/10.1155/2016/1480307

4. Azmain, M., & Rahman, M. (2018). Influences of Tranportation System on Land Use and Predicting the Changes in Khulna Metropolitan Area, Banglaedesh. International Journal of Scientific & Engineering Research, 9(9), 286-293.

5. Babu, C. M., Hemalatha, T., & Naik, B. R. (2016). Comparison of remote sensing-based indices for drought monitoring in Anantapur. International Journal of Applied Research, 2, 449-456.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3