Automated Classification of Breast Cancer Lesions for Digitised Mammograms via Computer-Aided Diagnosis System

Author:

Suradi Saifullah Harith,Abdullah Kamarul Amin,Isa Nor Ashidi Mat

Abstract

Women with breast cancer have a high risk of death. Digitised mammograms can be used to detect the early stage of breast cancer. However, digitised mammograms suffer low contrast appearances that may lead to misdiagnosis. This paper proposes a Computer-Aided Diagnosis (CAD) system of automated classification of breast cancer lesions using a modified image processing technique of Fuzzy Anisotropic Diffusion Histogram Equalization Contrast Adaptive Limited (FADHECAL) incorporated with Multilevel Otsu Thresholding on digitised mammograms. Four main blocks were used in this CAD system, namely; (i) Pre-processing and Enhancement block; (ii) Segmentation block; (iii) Region of Interests (ROIs) Extraction block; and (iv) Classification block. The CAD system was tested on 30 digitised mammograms retrieved from the Mini-Mammographic Image Analysis Society (MIAS) database with various degrees of severity and background tissues. The proposed CAD system showed a high accuracy of 96.67% for the detection of breast cancer lesions.

Publisher

UNIMAS Publisher

Subject

Industrial and Manufacturing Engineering,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference16 articles.

1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660

2. [2] Suppaya, K., Nasir, F. M., & Ab Ghani, A. (2020). Variations of Bi-Rads 5 in Mammography by Age, Ethnicity, and Breast Density: A Retrospective Study in University Malaya Medical Centre. Asian Journal of Medicine and Biomedicine, 4(SI 1), 11-16. https://doi.org/10.37231/ajmb.2020.4.SI%201.394

3. [3] Ravi, D.A. and Ismail, N. F. (2021). Knowledge And Awareness Of Breast Cancer And Mammography Among Women In Klang, Selangor. Malaysian Journal of Applied Sciences, 6(1), 15-20.. https://doi.org/https://doi.org/10.37231/myjas.2021.6.1.265Isa, N. A. M., & Siong, T. S. (2012). Automatic segmentation and detection of mass in digital mammograms. Recent researches in communications, signals and information technology, 143-146. ISBN: 978-1-61804-081-7

4. [4] Helvie, M. A. (2010). Digital mammography imaging: breast tomosynthesis and advanced applications. Radiologic Clinics, 48(5), 917-929. DOI:https://doi.org/10.1016/j.rcl.2010.06.009

5. [5] Paramkusham, S., Rao, K. M., & Rao, B. P. (2013, September). Early stage detection of breast cancer using novel image processing techniques, Matlab and Labview implementation. In 2013 15th International Conference on Advanced Computing Technologies (ICACT), IEEE, 1-5. https://doi.org/10.1109/ICACT.2013.6710511

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3