Machine learning molecular dynamics simulations of liquid methanol

Author:

Qian Jie,Xia Junfan,Jiang Bin,

Abstract

As the simplest hydrogen-bonded alcohol, liquid methanol has attracted intensive experimental and theoretical interest. However, theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals. Inspired by recent studies on bulk water using increasingly accurate machine learning force fields, we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction. Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations, yielding the radial distribution functions, self-diffusion coefficients, and hydrogen bond network properties with very small statistical errors. The resulting structural and dynamical properties are compared well with the experimental data, demonstrating the superior accuracy of this machine learning force field. This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.

Publisher

Journal of University of Science and Technology of China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3