Abstract
The curvature estimate of the Yang-Mills-Higgs flow on Higgs bundles over compact Kähler manifolds is studied. Under the assumptions that the Higgs bundle is non-semistable and the Harder-Narasimhan-Seshadri filtration has no singularities with length one, it is proved that the curvature of the evolved Hermitian metric is uniformly bounded.
Publisher
Journal of University of Science and Technology of China