Dynamic Uni- and Multicellular Patterns Encode Biphasic Activity in Pancreatic Islets

Author:

Jaffredo Manon1,Bertin Eléonore1,Pirog Antoine2,Puginier Emilie1,Gaitan Julien1,Oucherif Sandra1,Lebreton Fanny3,Bosco Domenico3,Catargi Bogdan14ORCID,Cattaert Daniel5,Renaud Sylvie2,Lang Jochen1,Raoux Matthieu1ORCID

Affiliation:

1. University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France

2. University of Bordeaux, CNRS, Institut National Polytechnique de Bordeaux, Laboratoire de l’Intégration du Matériau au Système, UMR 5218, Talence, France

3. Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland

4. University of Bordeaux, Hôpital Saint-André, Endocrinology and Metabolic Diseases, Bordeaux, France

5. University of Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, UMR 5287, Bordeaux, France

Abstract

Biphasic secretion is an autonomous feature of many endocrine micro-organs to fulfill physiological demands. The biphasic activity of islet β-cells maintains glucose homeostasis and is altered in type 2 diabetes. Nevertheless, underlying cellular or multicellular functional organizations are only partially understood. High-resolution noninvasive multielectrode array recordings permit simultaneous analysis of recruitment, of single-cell, and of coupling activity within entire islets in long-time experiments. Using this unbiased approach, we addressed the organizational modes of both first and second phase in mouse and human islets under physiological and pathophysiological conditions. Our data provide a new uni- and multicellular model of islet β-cell activation: during the first phase, small but highly active β-cell clusters are dominant, whereas during the second phase, electrical coupling generates large functional clusters via multicellular slow potentials to favor an economic sustained activity. Postprandial levels of glucagon-like peptide 1 favor coupling only in the second phase, whereas aging and glucotoxicity alter coupled activity in both phases. In summary, biphasic activity is encoded upstream of vesicle pools at the micro-organ level by multicellular electrical signals and their dynamic synchronization between β-cells. The profound alteration of the electrical organization of islets in pathophysiological conditions may contribute to functional deficits in type 2 diabetes.

Funder

European Regional Development Fund

Agency Nationale de la Recherche

Ministère de l’Education Nationale, de l’Enseignement Superieur et de la Recherche

Université de Bordeaux

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3