EphA5-EphrinA5 Interactions Within the Ventromedial Hypothalamus Influence Counterregulatory Hormone Release and Local Glutamine/Glutamate Balance During Hypoglycemia

Author:

Szepietowska Barbara1,Zhu Wanling1,Czyzyk Jan2,Eid Tore3,Sherwin Robert S.1

Affiliation:

1. Department of Internal Medicine and Endocrinology, Yale University School of Medicine, New Haven, Connecticut

2. Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York

3. Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut

Abstract

Activation of β-cell EphA5 receptors by its ligand ephrinA5 from adjacent β-cells has been reported to decrease insulin secretion during hypoglycemia. Given the similarities between islet and ventromedial hypothalamus (VMH) glucose sensing, we tested the hypothesis that the EphA5/ephrinA5 system might function within the VMH during hypoglycemia to stimulate counterregulatory hormone release as well. Counterregulatory responses and glutamine/glutamate concentrations in the VMH were assessed during a hyperinsulinemic-hypoglycemic glucose clamp study in chronically catheterized awake male Sprague-Dawley rats that received an acute VMH microinjection of ephrinA5-Fc, chronic VMH knockdown, or overexpression of ephrinA5 using an adenoassociated viral construct. Local stimulation of VMH EphA5 receptors by ephrinA5-Fc or ephrinA5 overexpression increased, whereas knockdown of VMH ephrinA5 reduced counterregulatory responses during hypoglycemia. Overexpression of VMH ephrinA5 transiently increased local glutamate concentrations, whereas ephrinA5 knockdown produced profound suppression of VMH interstitial fluid glutamine concentrations in the basal state and during hypoglycemia. Changes in ephrinA5/EphA5 interactions within the VMH, a key brain glucose-sensing region, act in concert with islets to restore glucose homeostasis during acute hypoglycemia, and its effect on counterregulation may be mediated by changes in glutamate/glutamine cycling.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3