Time Lag of Glucose From Intravascular to Interstitial Compartment in Humans

Author:

Basu Ananda1,Dube Simmi1,Slama Michael1,Errazuriz Isabel1,Amezcua Jose Carlos1,Kudva Yogish C.1,Peyser Thomas2,Carter Rickey E.3,Cobelli Claudio4,Basu Rita1

Affiliation:

1. Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota

2. Dexcom, Inc., San Diego, California

3. Department of Health Sciences Research, Mayo College of Medicine, Rochester, Minnesota

4. Department of Information Engineering, University of Padova, Padova, Italy

Abstract

The accuracy of continuous interstitial fluid (ISF) glucose sensing is an essential component of current and emerging open- and closed-loop systems for type 1 diabetes. An important determinant of sensor accuracy is the physiological time lag of glucose transport from the vascular to the interstitial space. We performed the first direct measurement of this phenomenon to our knowledge in eight healthy subjects under an overnight fasted condition. Microdialysis catheters were inserted into the abdominal subcutaneous space. After intravenous bolus administrations of glucose tracers, timed samples of plasma and ISF were collected sequentially and analyzed for tracer enrichments. After accounting for catheter dead space and assay noise, the mean time lag of tracer appearance in the interstitial space was 5.3–6.2 min. We conclude that in the overnight fasted state in healthy adults, the physiological delay of glucose transport from the vascular to the interstitial space is 5–6 min. Physiological delay between blood glucose and ISF glucose, therefore, should not be an obstacle to sensor accuracy in overnight or fasting-state closed-loop systems of insulin delivery or open-loop therapy assessment for type 1 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3