Early and Late G1/S Cyclins and Cdks Act Complementarily to Enhance Authentic Human β-Cell Proliferation and Expansion

Author:

Tiwari Shiwani1,Roel Chris1,Wills Rachel2,Casinelli Gabriella2,Tanwir Mansoor2,Takane Karen K.1,Fiaschi-Taesch Nathalie M.12

Affiliation:

1. Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY

2. Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA

Abstract

β-Cell regeneration is a key goal of diabetes research. Progression through the cell cycle is associated with retinoblastoma protein (pRb) inactivation via sequential phosphorylation by the “early” cyclins and cyclin-dependent kinases (cdks) (d-cyclins cdk4/6) and the “late” cyclins and cdks (cyclin A/E and cdk1/2). In β-cells, activation of either early or late G1/S cyclins and/or cdks is an efficient approach to induce cycle entry, but it is unknown whether the combined expression of early and late cyclins and cdks might have synergistic or additive effects. Thus, we explored whether a combination of both early and late cyclins and cdks might more effectively drive human β-cell cell cycle entry than either group alone. We also sought to determine whether authentic replication with the expansion of adult human β-cells could be demonstrated. Late cyclins and cdks do not traffic in response to the induction of replication by early cyclins and cdks in human β-cells but are capable of nuclear translocation when overexpressed. Early plus late cyclins and cdks, acting via pRb phosphorylation on distinct residues, complementarily induce greater proliferation in human β-cells than either group alone. Importantly, the combination of early and late cyclins and cdks clearly increased human β-cell numbers in vitro. These findings provide additional insight into human β-cell expansion. They also provide a novel tool for assessing β-cell expansion in vitro.

Funder

American Diabetes Association

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3