Affiliation:
1. Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Tübingen, Germany
2. Department of Pharmaceutical and Medical Chemistry, University of Münster, Münster, Germany
Abstract
Atrial natriuretic peptide (ANP) influences glucose homeostasis and possibly acts as a link between the cardiovascular system and metabolism, especially in metabolic disorders like diabetes. The current study evaluated effects of ANP on β-cell function by the use of a β-cell–specific knockout of the ANP receptor with guanylate cyclase activity (βGC-A-KO). ANP augmented insulin secretion at the threshold glucose concentration of 6 mmol/L and decreased KATP single-channel activity in β-cells of control mice but not of βGC-A-KO mice. In wild-type β-cells but not β-cells lacking functional KATP channels (SUR1-KO), ANP increased electrical activity, suggesting no involvement of other ion channels. At 6 mmol/L glucose, ANP readily elicited Ca2+ influx in control β-cells. This effect was blunted in β-cells of βGC-A-KO mice, and the maximal cytosolic Ca2+ concentration was lower. Experiments with inhibitors of protein kinase G (PKG), protein kinase A (PKA), phosphodiesterase 3B (PDE3B), and a membrane-permeable cyclic guanosine monophosphate (cGMP) analog on KATP channel activity and insulin secretion point to participation of the cGMP/PKG and cAMP/PKA/Epac (exchange protein directly activated by cAMP) directly activated by cAMP Epac pathways in the effects of ANP on β-cell function; the latter seems to prevail. Moreover, ANP potentiated the effect of glucagon-like peptide 1 (GLP-1) on glucose-induced insulin secretion, which could be caused by a cGMP-mediated inhibition of PDE3B, which in turn reduces cAMP degradation.
Funder
Deutsche Forschungsgemeinschaft
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献