New Potent α-Glucohydrolase Inhibitor MDL 73945 With Long Duration of Action in Rats

Author:

Robinson Keith M1,Begovic Mary E1,Rhinehart Barry L1,Heineke Eric W1,Ducep Jean-Bernard1,Kastner Philip R1,Marshall Franklin N1,Danzin Charles1

Affiliation:

1. Merrell Dow Research Institutes Strasbourg, France; Cincinnati, Ohio; and Indianapolis, Indiana

Abstract

Inhibition of intestinal α-glucohydrolase activity is one approach for reducing the glycemic response from dietary carbohydrate and may prove useful for the treatment of diabetes mellitus. In this article, we describe the pharmacological properties of a time-dependent intestinal α-glucohydrolase inhibitor, MDL 73945. When preincubated 2 h with a rat intestinal mucosa preparation before substrate addition, MDL 73945 was a potent inhibitor of sucrase, maltase, glucoamylase, and isomaltase activities (MDL 73945 concentrations required to cause a 50% decrease in enzyme activity, 2 × 10−7, 1 × 10−6, 5 × 10−6, and 8 × 10−6 M, respectively); without preincubation, it was 10- to 500-fold less potent. In rats, a single oral dose of MDL 73945 administered simultaneously with 2 g/kg body wt sucrose resulted in a dose-dependent reduction in the area under the 0- to 3-h glycemic response curve, which was significant at 1 (45% reduction) and 3 (65% reduction) mg/kg. When administered 1 h before sucrose, the compound was more potent, with 0.3 mg/kg MDL 73945 significantly reducing the glycemic response to sucrose by 62%. A reduction in the glycemic response to sucrose was accompanied by reduced insulin secretion. MDL 73945 was slightly less effective against a starch load, with 3 and 10 mg/kg MDL 73945 administered 0.5 h before starch reducing the glycemic response by 39 and 52%, respectively. MDL 73945 was more effective against a sucrose load in streptozocin-administered rats than in control rats and was as effective after 16 daily doses as after a single dose. Doses that reduced the glycemic response to carbohydrate did not inhibit liver lysosomal α-glucosidase activity or cause lysosomal glycogen accumulation. In cynomolgus monkeys, an oral dose of 1 mg/kg MDL 73945 reduced the glycemic and insulin responses to sucrose. Based on these findings, MDL 73945 may be useful for reducing postprandial hyperglycemia in subjects with diabetes mellitus.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3