Combined PTEN Knockdown and Local Insulin in Chronic Experimental Diabetic Neuropathy

Author:

Pham Vuong M.12,Komirishetty Prashanth3,Areti Aparna3,Poitras Trevor3,Thakor Nitish4,Zochodne Douglas W.3ORCID

Affiliation:

1. 1Singapore Institute for Neurotechnology, National University of Singapore, Singapore

2. 2Department of Biotechnology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam

3. 3Neuroscience and Mental Health Institute, Alberta Diabetes Institute, and Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada

4. 4Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD

Abstract

Diabetic polyneuropathy (DPN) renders progressive sensory neurodegeneration linked to hyperglycemia and its associated metabolopathy. We hypothesized that there may be additive impacts of direct insulin signaling, independent of glycemia and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) knockdown on neuropathy. Our targets for combined interventions were neurons and Schwann cells (SCs) in vitro and chronic type 1 DPN in mice. Insulin receptor expression was not altered by high-glucose conditions in neurons or SCs, and insulin promoted survival of neurons and proliferation of SCs in vitro. There were additive impacts between insulin signaling and PTEN knockdown in sensory neuron outgrowth and in axon myelination by SCs. In a chronic mouse model of experimental DPN, unilateral intra–hind paw injections of a PTEN siRNA and local insulin had additive impacts on correcting key features of chronic experimental DPN independent of glycemia, including motor axon conduction and thermal and mechanical sensory loss. Moreover, combined interventions improved sural and tibial nerve myelin thickness, hind paw epidermal innervation, and pAkt expression in dorsal root ganglion sensory neurons. We conclude that local PTEN inhibition or knockdown and insulin provide additive trophic support for sensory neurons and SCs while reversing key abnormalities of experimental DPN but without requiring metabolic correction. Article Highlights Impaired growth and plasticity of neurons may contribute to chronic diabetic polyneuropathy. Both direct insulin signaling of neurons and neuron knockdown of the protein phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a roadblock to neuronal regenerative growth, offer direct support of neurons. Direct insulin and PTEN knockdown using siRNA had additive impacts on neuron survival, Schwann cell proliferation, neuron outgrowth, and myelination in vitro. Combined local insulin and PTEN siRNA hind paw injections improved abnormalities in chronic experimental diabetic polyneuropathy, including sensory axon loss, independently of glycemia.

Funder

Canadian Institutes of Health Research

Drs Nguyet T. M. Nguyen

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3