Exercise Training Induces Mitochondrial Biogenesis and Glucose Uptake in Subcutaneous Adipose Tissue Through eNOS-Dependent Mechanisms

Author:

Trevellin Elisabetta1,Scorzeto Michele2,Olivieri Massimiliano1,Granzotto Marnie1,Valerio Alessandra3,Tedesco Laura4,Fabris Roberto1,Serra Roberto1,Quarta Marco2,Reggiani Carlo2,Nisoli Enzo4,Vettor Roberto1

Affiliation:

1. Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy

2. Department of Biomedical Sciences, University of Padua, Padua, Italy

3. Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy

4. Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy

Abstract

Insulin resistance and obesity are associated with a reduction of mitochondrial content in various tissues of mammals. Moreover, a reduced nitric oxide (NO) bioavailability impairs several cellular functions, including mitochondrial biogenesis and insulin-stimulated glucose uptake, two important mechanisms of body adaptation in response to physical exercise. Although these mechanisms have been thoroughly investigated in skeletal muscle and heart, few studies have focused on the effects of exercise on mitochondria and glucose metabolism in adipose tissue. In this study, we compared the in vivo effects of chronic exercise in subcutaneous adipose tissue of wild-type (WT) and endothelial NO synthase (eNOS) knockout (eNOS−/−) mice after a swim training period. We then investigated the in vitro effects of NO on mouse 3T3-L1 and human subcutaneous adipose tissue–derived adipocytes after a chronic treatment with an NO donor: diethylenetriamine-NO (DETA-NO). We observed that swim training increases mitochondrial biogenesis, mitochondrial DNA content, and glucose uptake in subcutaneous adipose tissue of WT but not eNOS−/− mice. Furthermore, we observed that DETA-NO promotes mitochondrial biogenesis and elongation, glucose uptake, and GLUT4 translocation in cultured murine and human adipocytes. These results point to the crucial role of the eNOS-derived NO in the metabolic adaptation of subcutaneous adipose tissue to exercise training.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3