Individual Stearoyl-CoA Desaturase 1 Expression Modulates Endoplasmic Reticulum Stress and Inflammation in Human Myotubes and Is Associated With Skeletal Muscle Lipid Storage and Insulin Sensitivity In Vivo

Author:

Peter Andreas1,Weigert Cora1,Staiger Harald1,Machicao Fausto1,Schick Fritz2,Machann Jürgen2,Stefan Norbert1,Thamer Claus1,Häring Hans-Ulrich1,Schleicher Erwin1

Affiliation:

1. Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology, and Clinical Chemistry, University of Tübingen, Tübingen, Germany;

2. Section of Experimental Radiology, University of Tübingen, Tübingen, Germany.

Abstract

OBJECTIVE Increased plasma levels of free fatty acids occur in obesity and type 2 diabetes and contribute to the development of insulin resistance. Saturated fatty acids (SFAs) such as palmitate especially have lipotoxic effects leading to endoplasmatic reticulum (ER) stress, inflammation, and insulin resistance. Stearoyl-CoA desaturase 1 (SCD1) plays a key role in preventing lipotoxic effects, as it converts SFAs to less harmful monounsaturated fatty acids. Here, we tested the hypothesis that individual differences in the regulation of SCD1 expression by palmitate exist and influence insulin sensitivity and the cellular response to palmitate. RESEARCH DESIGN AND METHODS Palmitate-induced gene expression was studied in primary human myotubes of 39 metabolically characterized individuals, as well as in an SCD1-overexpressing cell culture model. RESULTS SCD1 mRNA expression and inducibility by palmitate in cultured myotubes showed a broad interindividual variation, presumably due to inheritable characteristics of the donors. Overexpression of SCD1 prevented the inflammatory and ER stress response to palmitate exposure. In primary human myotubes, high SCD1 inducibility was associated with a low inflammatory (interleukin [IL]-6, IL-8, and chemokine [CXC motif] ligand 3 [CXCL3]) and ER stress (CCAAT/enhancer binding protein [C/EBP] homologous protein, activating transcription factor 3 [ATF3], and X-box binding protein 1 [XBP1]) response to palmitate exposure. Finally, palmitate-stimulated SCD1 mRNA expression, positively correlated with intramyocellular lipid (IMCL) content of the donors, was measured by 1H-magnetic resonance spectroscopy. After adjustment for IMCL, SCD1 expression and inducibility were positively correlated with insulin sensitivity. CONCLUSIONS We hypothesize that myocellular SCD1 inducibility by palmitate is an individual characteristic that modulates lipid storage, palmitate-induced inflammation, ER stress, and insulin resistance. This may describe individuals with increased capability of innoxious free fatty acid handling and benign triglyceride storage.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3