Gene and Protein Kinase Expression Profiling of Reactive Oxygen Species-Associated Lipotoxicity in the Pancreatic β-Cell Line MIN6

Author:

Wang Xiaolin1,Li Hui12,De Leo Domenica1,Guo Wanbei2,Koshkin Vasilij1,Fantus I. George13,Giacca Adria1,Chan Catherine B.4,Der Sandy2,Wheeler Michael B.13

Affiliation:

1. Department of Physiology, University of Toronto, Toronto, Ontario, Canada

2. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

3. Department of Medicine, University of Toronto, Toronto, Ontario, Canada

4. Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada

Abstract

Oligonucleotide microarrays were used to define oleic acid (OA)-regulated gene expression and proteomic technology to screen protein kinases in MIN6 insulinoma cells. The effects of oxidative stress caused by OA and potential protective effects of N-acetyl-l-cysteine (NAC), a scavenger of reactive oxygen species (ROS), on global gene expression and β-cell function were investigated. Long-term exposure of MIN6 cells to OA led to a threefold increase in basal insulin secretion, a 50% decrease in insulin content, an inhibition of glucose-stimulated insulin secretion (GSIS), and a twofold increase in the level of ROS. The addition of NAC normalized both the OA-induced insulin content and ROS elevation, but it failed to restore GSIS. Microarray studies and subsequent quantitative PCR analysis showed that OA consistently regulated the expression of 45 genes involved in metabolism, cell growth, signal transduction, transcription, and protein processing. The addition of NAC largely normalized the expression of the OA-regulated genes involved in cell growth and differentiation but not other functions. A protein kinase screen showed that OA regulated the expression and/or phosphorylation levels of kinases involved in stress-response mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and cell cycle control pathways. Importantly, these findings indicate that chronic OA exposure can impair β-cell function through ROS-dependent and -independent mechanisms.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3