Decreased In Situ Insulin Receptor Dephosphorylation in Hyperglycemia-Induced Insulin Resistance in Rat Adipocytes

Author:

Tang Shangguo1,Le-Tien Hoang1,Goldstein Barry J.1,Shin Phillip1,Lai Robert1,Fantus I. George1

Affiliation:

1. From the Department of Medicine (I.G.F.), Mount Sinai Hospital and the University Health Network; the Department of Physiology (P.S., I.G.F.) and Banting and Best Diabetes Centre (S.T., H.L.-T., P.S., R.L., I.G.F.), University of Toronto, Toronto, Ontario, Canada; and the Department of Medicine and the Dorrance H. Hamilton Research Laboratories (B.J.G.), Jefferson Medical College, Philadelphia, Pennsylvania.

Abstract

The regulation of insulin receptor (IR) tyrosine (tyr) phosphorylation is a key step in the control of insulin signaling. Augmented IR tyr dephosphorylation by protein tyrosine phosphatases (PTPs) may contribute to insulin resistance. To investigate this possibility in hyperglycemia-induced insulin resistance, primary cultured rat adipocytes were rendered insulin-resistant by chronic exposure (18 h) to 15 mmol/l glucose combined with 10-7 mol/l insulin. Insulin-resistant adipocytes showed a decrease in insulin sensitivity and a maximum response of 2-deoxyglucose uptake, which was associated with a decrease in maximum insulin-stimulated IR tyr phosphorylation in situ. To assess tyr dephosphorylation, IRs of insulin-stimulated permeabilized adipocytes were labeled with [γ-32P]ATP and chased for 2 min with unlabeled ATP in the presence of EDTA. In a nonradioactive protocol, insulin-stimulated adipocytes were permeabilized and exposed to EDTA and erbstatin for 2 min, and IRs were immunoblotted with anti-phosphotyrosine (pY) antibodies. Both methods showed a similar diminished extent of IR tyr dephosphorylation in resistant cells. Immunoblotting of four candidate IR-PTPs demonstrated no change in PTP1B or the SH2 domain containing phosphatase-2 (SHP-2), whereas a significant decrease in leukocyte antigen-related phosphatase (LAR) (51 ± 3% of control) and an increase in PTP-α (165 ± 16%) were found. Activity of immunoprecipitated PTPs toward a triple tyr phosphorylated IR peptide revealed a correlation with protein content for PTP1B, SHP-2, and LAR but a decrease in apparent specific activity of PTP-α. The data indicate that decreased IR tyr phosphorylation in hyperglycemia-induced insulin resistance is not due to enhanced dephosphorylation. The diminished IR tyr dephosphorylation observed in this model is associated with decreased LAR protein content and activity.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3