Caffeine Ingestion Decreases Glucose Disposal During a Hyperinsulinemic-Euglycemic Clamp in Sedentary Humans

Author:

Greer Felicia1,Hudson Robert2,Ross Robert3,Graham Terry4

Affiliation:

1. Ohio University Eastern, St. Clairsville, Ohio

2. Department of Medicine, Division of Endocrinology, Queen’s University, Kingston, Ontario, Canada

3. School of Physical and Health Education, Queen’s University, Kingston, Ontario, Canada

4. Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada

Abstract

The purpose of this investigation was to examine the effect of caffeine (an adenosine receptor antagonist) on whole-body insulin-mediated glucose disposal in resting humans. We hypothesized that glucose disposal would be lower after the administration of caffeine compared with placebo. Healthy, lean, sedentary (n = 9) men underwent two trial sessions, one after caffeine administration (5 mg/kg body wt) and one after placebo administration (dextrose) in a double-blind randomized design. Glucose disposal was assessed using a hyperinsulinemic-euglycemic clamp. Before the clamp, there were no differences in circulating levels of methylxanthines, catecholamines, or glucose. Euglycemia was maintained throughout the clamp with no difference in plasma glucose concentrations between trials. The insulin concentrations were also similar in the caffeine and placebo trials. After caffeine administration, glucose disposal was 6.38 ± 0.76 mg/kg body wt compared with 8.42 ± 0.63 mg/kg body wt after the placebo trial. This represents a significant (P < 0.05) decrease (24%) in glucose disposal after caffeine ingestion. In addition, carbohydrate storage was 35% lower (P < 0.05) in the caffeine trial than in the placebo trial. Furthermore, even when the difference in glucose disposal was normalized between the trials, there was a 23% difference in the amount of carbohydrate stored after caffeine administration compared with placebo administration. Caffeine ingestion also resulted in higher plasma epinephrine levels than placebo ingestion (P < 0.05). These data support our hypothesis that caffeine ingestion decreases glucose disposal and suggests that adenosine plays a role in regulating glucose disposal in resting humans.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3