Factor Analysis of Metabolic Syndrome Using Directly Measured Insulin Sensitivity

Author:

Hanley Anthony J.G.12,Karter Andrew J.3,Festa Andreas1,D’Agostino Ralph4,Wagenknecht Lynne E.4,Savage Peter5,Tracy Russell P.6,Saad Mohammed F.7,Haffner Steven1

Affiliation:

1. Division of Clinical Epidemiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas

2. Division of Epidemiology and Biostatistics, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Canada

3. Division of Research, Kaiser Permanente, Oakland, California

4. Department of Public Health Sciences, Wake Forest University School of Medicine, Winston Salem, North Carolina

5. Division of Epidemiology and Clinical Applications, National Heart, Lung and Blood Institute, Bethesda, Maryland

6. Departments of Pathology and Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont

7. Department of Medicine, University of Southern California School of Medicine, Los Angeles, California

Abstract

Factor analysis, a multivariate correlation technique, has been used to provide insight into the underlying structure of metabolic syndrome, which is characterized by physiological complexity and strong statistical intercorrelation among its key variables. The majority of previous factor analyses, however, have used only surrogate measures of insulin sensitivity. In addition, few have included members of multiple ethnic groups, and only one has presented results separately for subjects with impaired glucose tolerance. The objective of this study was to investigate, using factor analysis, the clustering of physiologic variables using data from 1,087 nondiabetic participants in the Insulin Resistance Atherosclerosis Study (IRAS). This study includes information on the directly measured insulin sensitivity index (SI) from intravenous glucose tolerance testing among African-American, Hispanic, and non-Hispanic white subjects aged 40–69 years at various stages of glucose tolerance. Principal factor analysis identified two factors that explained 28 and 9% of the variance in the dataset, respectively. These factors were interpreted as 1) a “ metabolic” factor, with positive loadings of BMI, waist, fasting and 2-h glucose, and triglyceride and inverse loadings of log(SI+1) and HDL; and 2) a “blood pressure” factor, with positive loadings of systolic and diastolic blood pressure. The results were unchanged when surrogate measures of insulin resistance were used in place of log(SI+1). In addition, the results were similar within strata of sex, glucose tolerance status, and ethnicity. In conclusion, factor analysis identified two underlying factors among a group of metabolic syndrome variables in this dataset. Analyses using surrogate measures of insulin resistance suggested that these variables provide adequate information to explore the underlying intercorrelational structure of metabolic syndrome. Additional clarification of the physiologic characteristics of metabolic syndrome is required as individuals with this condition are increasingly being considered candidates for behavioral and pharmacologic intervention.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3