Affiliation:
1. From the Pacific Northwest Research Institute (I.B., J.S.H., C.L.K.,V.B.S., V.P.) and the Department of Medicine (V.B.S., V.P.), University of Washington, Seattle, Washington.
Abstract
Prolonged exposure of isolated islets to supraphysiologic concentrations of palmitate decreases insulin gene expression in the presence of elevated glucose levels. This study was designed to determine whether or not this phenomenon is associated with a glucose-dependent increase in esterification of fatty acids into neutral lipids. Gene expression of sn-glycerol-3-phosphate acyltransferase (GPAT), diacylglycerol acyltransferase (DGAT), and hormone-sensitive lipase (HSL), three key enzymes of lipid metabolism, was detected in isolated rat islets. Their levels of expression were not affected after a 72-h exposure to elevated glucose and palmitate. To determine the effects of glucose on palmitate-induced neutral lipid synthesis, isolated rat islets were cultured for 72 h with trace amounts of [14C]palmitate with or without 0.5 mmol/l unlabeled palmitate,at 2.8 or 16.7 mmol/l glucose. Glucose increased incorporation of[14C]palmitate into complex lipids. Addition of exogenous palmitate directed lipid metabolism toward neutral lipid synthesis. As a result, neutral lipid mass was increased upon prolonged incubation with elevated palmitate only in the presence of high glucose. The ability of palmitate to increase neutral lipid synthesis in the presence of high glucose was concentration-dependent in HIT cells and was inversely correlated to insulin mRNA levels. 2-Bromopalmitate, an inhibitor of fatty acid mitochondrialβ-oxidation, reproduced the inhibitory effect of palmitate on insulin mRNA levels. In contrast, palmitate methyl ester, which is not metabolized,and the medium-chain fatty acid octanoate, which is readily oxidized, did not affect insulin gene expression, suggesting that fatty-acid inhibition of insulin gene expression requires activation of the esterification pathway. These results demonstrate that inhibition of insulin gene expression upon prolonged exposure of islets to palmitate is associated with a glucose-dependent increase in esterification of fatty acids into neutral lipids.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
261 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献