Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction.

Author:

Sakoda H1,Ogihara T1,Anai M1,Funaki M1,Inukai K1,Katagiri H1,Fukushima Y1,Onishi Y1,Ono H1,Fujishiro M1,Kikuchi M1,Oka Y1,Asano T1

Affiliation:

1. Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.

Abstract

Glucocorticoids reportedly induce insulin resistance. In this study, we investigated the mechanism of glucocorticoid-induced insulin resistance using 3T3-L1 adipocytes in which treatment with dexamethasone has been shown to impair the insulin-induced increase in glucose uptake. In 3T3-L1 adipocytes treated with dexamethasone, the GLUT1 protein expression level was decreased by 30%, which possibly caused decreased basal glucose uptake. On the other hand, dexamethasone treatment did not alter the amount of GLUT4 protein in total cell lysates but decreased the insulin-stimulated GLUT4 translocation to the plasma membrane, which possibly caused decreased insulin-stimulated glucose uptake. Dexamethasone did not alter tyrosine phosphorylation of insulin receptors, and it significantly decreased protein expression and tyrosine phosphorylation of insulin receptor substrate (IRS)-1. Interestingly, however, protein expression and tyrosine phosphorylation of IRS-2 were increased. To investigate whether the reduced IRS-1 content is involved in insulin resistance, IRS-1 was overexpressed in dexamethasone-treated 3T3-L1 adipocytes using an adenovirus transfection system. Despite protein expression and phosphorylation levels of IRS-1 being normalized, insulin-induced 2-deoxy-D-[3H]glucose uptake impaired by dexamethasone showed no significant improvement. Subsequently, we examined the effect of dexamethasone on the glucose uptake increase induced by overexpression of GLUT2-tagged p110alpha, constitutively active Akt (myristoylated Akt), oxidative stress (30 mU glucose oxidase for 2 h), 2 mmol/l 5-aminoimidazole-4-carboxamide ribonucleoside for 30 min, and osmotic shock (600 mmol/l sorbitol for 30 min). Dexamethasone treatment clearly inhibited the increases in glucose uptake produced by these agents. Thus, in conclusion, the GLUT1 decrease may be involved in the dexamethasone-induced decrease in basal glucose transport activity, and the mechanism of dexamethasone-induced insulin resistance in glucose transport activity (rather than the inhibition of phosphatidylinositol 3-kinase activation resulting from a decreased IRS-1 content) is likely to underlie impaired glucose transporter regulation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3