Resistance of ALR/Lt islets to free radical-mediated diabetogenic stress is inherited as a dominant trait.

Author:

Mathews C E1,Leiter E H1

Affiliation:

1. The Jackson Laboratory, Bar Harbor, Maine 04609, USA.

Abstract

ALS/Lt and ALR/Lt are inbred mouse strains selected for susceptibility and resistance to alloxan (AL)-induced diabetes. Within 24-h after AL administration in vivo, ALS/Lt islets were distinguished from ALR/Lt islets by more extensive necrotic changes. Within 7 days post-AL, ALS/Lt mice exhibited hyperglycemia and hypoinsulinemia, whereas ALR/Lt mice maintained normal plasma insulin and glucose levels. We have recently shown that resistance in ALR/Lt correlated with constitutively elevated systemic (and pancreatic) free radical defense status. In the present report, we examined whether ability to detoxify free radical stress extended to the level of ALR/Lt pancreatic islets. Cultured ALS/Lt islets exposed for 5 min to increasing (0-3 mmol/l) AL concentrations in vitro exhibited an 80% decline in numbers of intact islets after a subsequent 6-day culture period, as well as a 75% reduction in islet insulin content and a 94% decrease in glucose-stimulated insulin secretory capacity. In contrast, ALR/Lt islets remained viable and retained glucose-stimulated insulin secretory capacity as well as normal insulin content. This ALR/Lt islet resistance extended to hydrogen peroxide, a free radical generator whose entry into beta-cells is not dependent on glucose transporters. The elevated antioxidant defenses previously found in ALR/Lt pancreas were extended to isolated islets, which exhibited significantly higher glutathione and Cu-Zn superoxide dismutase 1 levels compared with ALS/Lt islets. A dominant genetic trait from ALR/Lt controlling this unusual AL resistance was indicated by the finding that reciprocal F1 mice of both sexes were resistant to AL administration in vivo. A backcross to ALS/Lt showed 1:1 segregation for susceptibility/resistance, indicative of a single gene controlling the phenotype. In conclusion, the ALR/Lt mouse may provide important insight into genetic mechanisms capable of rendering islets strongly resistant to free radical-mediated damage.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3