Catalase Protects Cardiomyocyte Function in Models of Type 1 and Type 2 Diabetes

Author:

Ye Gang1,Metreveli Naira S.1,Donthi Rajakumar V.1,Xia Shen1,Xu Ming1,Carlson Edward C.2,Epstein Paul N.1

Affiliation:

1. Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky

2. Department of Anatomy and Cell Biology, University of North Dakota, Grand Forks, North Dakota

Abstract

Many diabetic patients suffer from a cardiomyopathy that cannot be explained by poor coronary perfusion. Reactive oxygen species (ROS) have been proposed to contribute to this cardiomyopathy. Consistent with this we found evidence for induction of the antioxidant genes for catalase in diabetic OVE26 hearts. To determine whether increased antioxidant protection could reduce diabetic cardiomyopathy, we assessed cardiac morphology and contractility, Ca2+ handling, malondialdehyde (MDA)-modified proteins, and ROS levels in individual cardiomyocytes isolated from control hearts, OVE26 diabetic hearts, and diabetic hearts overexpressing the antioxidant protein catalase. Diabetic hearts showed damaged mitochondria and myofibrils, reduced myocyte contractility, slowed intracellular Ca2+ decay, and increased MDA-modified proteins compared with control myocytes. Overexpressing catalase preserved normal cardiac morphology, prevented the contractile defects, and reduced MDA protein modification but did not reverse the slowed Ca2+ decay induced by diabetes. Additionally, high glucose promoted significantly increased generation of ROS in diabetic cardiomyocytes. Chronic overexpression of catalase or acute in vitro treatment with rotenone, an inhibitor of mitochondrial complex I, or thenoyltrifluoroacetone, an inhibitor of mitochondrial complex II, eliminated excess ROS production in diabetic cardiomyocytes. The structural damage to diabetic mitochondria and the efficacy of mitochondrial inhibitors in reducing ROS suggest that mitochondria are a source of oxidative damage in diabetic cardiomyocytes. We also found that catalase overexpression protected cardiomyocyte contractility in the agouti model of type 2 diabetes. These data show that both type 1 and type 2 diabetes induce damage at the level of individual myocytes, and that this damage occurs through mechanisms utilizing ROS.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 232 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3