Development of insulin resistance in the JCR:LA-cp rat: role of triacylglycerols and effects of MEDICA 16.

Author:

Russell J C1,Shillabeer G1,Bar-Tana J1,Lau D C1,Richardson M1,Wenzel L M1,Graham S E1,Dolphin P J1

Affiliation:

1. Department of Surgery, University of Alberta, Edmonton, Canada. jim.russell@ualberta.ca

Abstract

The JCR:LA-cp rat develops an extreme obese/insulin-resistant syndrome such that by 12 weeks of age, there is no longer any insulin-mediated glucose turnover. At 4 weeks of age, obese and lean rats have essentially identical basal and insulin-mediated glucose uptake in skeletal muscle. By 8 weeks of age, however, the obese rats no longer exhibit such intake. Plasma insulin concentrations in the normal fed state show only small increases up to 4 weeks, with a rapid rise to a marked hyperinsulinemia thereafter, with an age at half-development of 5.5 weeks. Plasma triacylglycerol concentrations in fed obese rats are elevated at 3 weeks and rise rapidly thereafter. The triacylglycerol content of skeletal muscle is significantly elevated in the obese rats at 4 weeks of age. Histological examination of Oil Red O-stained muscle tissue and transmission electron microscopy shows the presence of intracellular lipid droplets. Treatment with the potent triacylglycerol-lowering agent MEDICA 16 (beta,beta'-tetramethylhexadecanedioic acid) from 6 weeks of age reduces plasma lipids markedly, but it reduces body weight and insulin resistance only modestly. In contrast, treatment with MEDICA 16 from the time of weaning at 3 weeks of age results in the normalization of food intake and body weight to over 8 weeks of age. The development of hyperinsulinemia is also delayed until 8.5 weeks of age, and insulin levels remain strongly reduced. Plasma triacylglycerol concentrations remain at the same level as in lean rats, and neither an elevated muscle triacylglycerol content nor intracellular lipid droplets are found at 4 weeks of age. The results indicate that insulin resistance develops in the young animals and is not directly due to a genetically determined defect in insulin metabolism. The mechanism of induction instead appears to be related to an exaggerated triacylglycerol metabolism.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3