Glucose Autoregulates Its Uptake in Skeletal Muscle

Author:

Itani Samar I.1,Saha Asish K.1,Kurowski Theodore G.1,Coffin Heather R.1,Tornheim Keith1,Ruderman Neil B.1

Affiliation:

1. From the Diabetes and Metabolism Unit and Departments of Medicine, Physiology and Biochemistry, Boston University Medical Center, Boston, Massachusetts

Abstract

Preexposure to a low concentration of glucose upregulates glucose transport into skeletal muscle, whereas exposure to a high concentration of glucose has the opposite effect. This autoregulatory process occurs independently of insulin, and the mechanism by which it operates is incompletely understood. Activation of the energy-sensing enzyme AMP-activated protein kinase (AMPK) has been shown to increase insulin-independent glucose transport into skeletal muscle in response to such stimuli as exercise and hypoxia. In the present study, we examined whether AMPK could also mediate glucose autoregulation. The activity of the α2 isoform of AMPK and 2-deoxyglucose uptake were assessed in incubated rat extensor digitorum longus muscle after preincubation for 4 h in media containing 0, 3, 6, or 25 mmol/l glucose. The principal findings were as follows. First, AMPK activity was highest in muscles incubated with no added glucose, and it decreased as the concentration of glucose was increased. In keeping with these findings, the concentration of malonyl CoA was increased, and acetyl CoA carboxylase phosphorylation at serine 79 was decreased as the medium glucose concentration was raised. Second, decreases in AMPK activity at the higher glucose concentrations correlated closely with decreases in glucose transport (2-deoxyglucose uptake), measured during a subsequent 20-min incubation at 6 mmol/l glucose (r2 = 0.93, P < 0.001). Third, the decrease in AMPK activity at the higher glucose concentrations was not associated with changes in whole-tissue concentrations of creatine phosphate or adenine nucleotides; however, it did correlate with increases in the rate of glycolysis, as estimated by lactate release. The results suggest that glucose autoregulates its own transport into skeletal muscle by a mechanism involving AMPK. They also suggest that this autoregulatory mechanism is not paralleled by changes in whole-tissue concentrations of creatine phosphate ATP, or AMP, but they leave open the possibility that alterations in a cytosolic pool of these compounds play a regulatory role.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3