Mesenchymal Stem Cells From Infants Born to Obese Mothers Exhibit Greater Potential for Adipogenesis: The Healthy Start BabyBUMP Project

Author:

Boyle Kristen E.1,Patinkin Zachary W.1,Shapiro Allison L.B.2,Baker Peter R.3,Dabelea Dana2,Friedman Jacob E.4

Affiliation:

1. Section of Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO

2. Colorado School of Public Health, Aurora, CO

3. Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO

4. Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO

Abstract

Maternal obesity increases the risk for pediatric obesity; however, the molecular mechanisms in human infants remain poorly understood. We hypothesized that mesenchymal stem cells (MSCs) from infants born to obese mothers would demonstrate greater potential for adipogenesis and less potential for myogenesis, driven by differences in β-catenin, a regulator of MSC commitment. MSCs were cultured from the umbilical cords of infants born to normal-weight (prepregnancy [pp] BMI 21.1 ± 0.3 kg/m2; n = 15; NW-MSCs) and obese mothers (ppBMI 34.6 ± 1.0 kg/m2; n = 14; Ob-MSCs). Upon differentiation, Ob-MSCs exhibit evidence of greater adipogenesis (+30% Oil Red O stain [ORO], +50% peroxisome proliferator–activated receptor (PPAR)-γ protein; P < 0.05) compared with NW-MSCs. In undifferentiated cells, total β-catenin protein content was 10% lower and phosphorylated Thr41Ser45/total β-catenin was 25% higher (P < 0.05) in Ob-MSCs versus NW-MSCs (P < 0.05). Coupled with 25% lower inhibitory phosphorylation of GSK-3β in Ob-MSCs (P < 0.05), these data suggest greater β-catenin degradation in Ob-MSCs. Lithium chloride inhibition of GSK-3β increased nuclear β-catenin content and normalized nuclear PPAR-γ in Ob-MSCs. Last, ORO in adipogenic differentiating cells was positively correlated with the percent fat mass in infants (r = 0.475; P < 0.05). These results suggest that altered GSK-3β/β-catenin signaling in MSCs of infants exposed to maternal obesity may have important consequences for MSC lineage commitment, fetal fat accrual, and offspring obesity risk.

Funder

Obesity Society

University of Colorado Center for Women’s Health Research

National Cancer Institute

National Institute of Child Health and Development

American Heart Association

National Institute of Diabetes and Digestive and Kidney Diseases

National Center for Advancing Translational Sciences

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3