High Glucose Induces Toll-Like Receptor Expression in Human Monocytes

Author:

Dasu Mohan R.1,Devaraj Sridevi1,Zhao Ling2,Hwang Daniel H.2,Jialal Ishwarlal1

Affiliation:

1. Laboratory for Atherosclerosis and Metabolic Research, University of California Davis Medical Center, Sacramento, California

2. U.S. Department of Agriculture/Agricultural Research Service Western Human Nutrition Research Center and University of California, Davis, California

Abstract

OBJECTIVE—Hyperglycemia-induced inflammation is central in diabetes complications, and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses and inflammation. However, there is a paucity of data examining the expression and activity of TLRs in hyperglycemic conditions. Thus, in the present study, we examined TLR2 and TLR4 mRNA and protein expression and mechanism of their induction in monocytic cells under high-glucose conditions. RESEARCH DESIGN AND METHODS—High glucose (15 mmol/l) significantly induced TLR2 and TLR4 expression in THP-1 cells in a time- and dose-dependent manner (P < 0.05). High glucose increased TLR expression, myeloid differentiation factor 88, interleukin-1 receptor–associated kinase-1, and nuclear factor-κB (NF-κB) p65-dependent activation in THP-1 cells. THP-1 cell data were further confirmed using freshly isolated monocytes from healthy human volunteers (n = 10). RESULTS—Pharmacological inhibition of protein kinase C (PKC) activity and NADPH oxidase significantly decreased TLR2 and TLR4 mRNA and protein (P < 0.05). Knocking down both TLR2 and TLR4 in the cells resulted in a 76% (P < 0.05) decrease in high-glucose–induced NF-κB activity, suggesting an additive effect. Furthermore, PKC-α knockdown decreased TLR2 by 61% (P < 0.05), whereas inhibition of PKC-δ decreased TLR4 under high glucose by 63% (P < 0.05). Small inhibitory RNA to p47Phox in THP-1 cells abrogated high-glucose–induced TLR2 and TLR4 expression. Additional studies revealed that PKC-α, PKC-δ, and p47Phox knockdown significantly abrogated high-glucose–induced NF-κB activation and inflammatory cytokine secretion. CONCLUSIONS—Collectively, these data suggest that high glucose induces TLR2 and -4 expression via PKC-α and PKC-δ, respectively, by stimulating NADPH oxidase in human monocytes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 381 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3