Islet-Expressed CXCL10 Promotes Autoimmune Destruction of Islet Isografts in Mice With Type 1 Diabetes

Author:

Bender Christine1,Christen Selina1,Scholich Klaus2,Bayer Monika1,Pfeilschifter Josef M.1,Hintermann Edith1,Christen Urs1ORCID

Affiliation:

1. Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany

2. Institute for Clinical Pharmacology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany

Abstract

Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing β-cells in the pancreas. Thereby, the chemokine CXC-motif ligand 10 (CXCL10) plays an important role in the recruitment of autoaggressive lymphocytes to the islets of Langerhans. Transplantation of isolated islets as a promising therapy for T1D has been hampered by early graft rejection. Here, we investigated the influence of CXCL10 on the autoimmune destruction of islet isografts using RIP-LCMV mice expressing a lymphocytic choriomeningitis virus (LCMV) protein in the β-cells. RIP-LCMV islets express CXCL10 after isolation and maintain CXCL10 production after engraftment. Thus, we isolated islets from either normal or CXCL10-deficient RIP-LCMV mice and transferred them under the kidney capsule of diabetic RIP-LCMV mice. We found that the autoimmune destruction of CXCL10-deficient islet isografts was significantly reduced. The autoimmune destruction was also diminished in mice administered with an anti-CXCL10 antibody. The persistent protection from autoimmune destruction was paralleled by an increase in FoxP3+ regulatory T cells within the cellular infiltrates around the islet isografts. Consequently, CXCL10 might influence the cellular composition locally in the islet graft, thereby playing a role in the autoimmune destruction. CXCL10 might therefore constitute a potential therapeutic target to prolong islet graft survival.

Funder

German Research Foundation

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3