Malonyl CoenzymeA Decarboxylase Regulates Lipid and Glucose Metabolism in Human Skeletal Muscle

Author:

Bouzakri Karim1,Austin Reginald1,Rune Anna1,Lassman Michael E.2,Garcia-Roves Pablo M.1,Berger Joel P.2,Krook Anna13,Chibalin Alexander V.1,Zhang Bei B.2,Zierath Juleen R.1

Affiliation:

1. Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden

2. Merck Research Laboratories, Rahway, NJ

3. Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden

Abstract

OBJECTIVE—Malonyl coenzyme A (CoA) decarboxylase (MCD) is a key enzyme responsible for malonyl-CoA turnover and functions in the control of the balance between lipid and glucose metabolism. We utilized RNA interference (siRNA)-based gene silencing to determine the direct role of MCD on metabolic responses in primary human skeletal muscle. RESEARCH DESIGN AND METHODS—We used siRNA to silence MCD gene expression in cultured human myotubes from healthy volunteers (seven male and seven female) with no known metabolic disorders. Thereafter, we determined lipid and glucose metabolism and signal transduction under basal and insulin-stimulated conditions. RESULTS—RNA interference–based silencing of MCD expression (75% reduction) increased malonyl-CoA levels twofold and shifted substrate utilization from lipid to glucose oxidation. RNA interference–based depletion of MCD reduced basal palmitate oxidation. In parallel with this reduction, palmitate uptake was decreased under basal (40%) and insulin-stimulated (49%) conditions compared with myotubes transfected with a scrambled sequence. MCD silencing increased basal and insulin-mediated glucose oxidation 1.4- and 2.6-fold, respectively, compared with myotubes transfected with a scrambled sequence. In addition, glucose transport and cell-surface GLUT4 content was increased. In contrast, insulin action on IRS-1 tyrosine phosphorylation, tyrosine-associated phosphatidylinositol (PI) 3-kinase activity, Akt, and glycogen synthase kinase (GSK) phosphorylation was unaltered between myotubes transfected with siRNA against MCD versus a scrambled sequence. CONCLUSIONS—These results provide evidence that MCD silencing suppresses lipid uptake and enhances glucose uptake in primary human myotubes. In conclusion, MCD expression plays a key reciprocal role in the balance between lipid and glucose metabolism.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3