Overexpression of Glycogen Phosphorylase Increases GLUT4 Expression and Glucose Transport in Cultured Skeletal Human Muscle

Author:

Baqué Susanna1,Montell Eulàlia1,Camps Marta1,Guinovart Joan J1,Zorzano Antonio1,Gòmez-Foix Anna M1

Affiliation:

1. Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona Barcelona, Spain

Abstract

Skeletal muscle glucose utilization, a major factor in the control of whole-body glucose tolerance, is modulated in accordance with the muscle metabolic demand. For instance, it is increased in chronic contraction or exercise training in association with elevated expression of GLUT4 and hexokinase II (HK-II). In this work, the contribution of increased metabolic flux to the regulation of the glucose transport capacity was analyzed in cultured human skeletal muscle engineered to overexpress glycogen phosphorylase (GP). Myocytes treated with an adenovirus-bearing muscle GP cDNA (AdCMVMGP) expressed 10 times higher GP activity and exhibited a twofold increase in the Vmax for 2-deoxy-D-[3H]glucose (2-DG) uptake, with no effect on the apparent Km. The stimulatory effect of insulin on 2-DG uptake was also markedly enhanced in AdCMVMGP- treated cells, which showed maximal insulin stimulation 2.8 times higher than control cells. No changes in HKII total activity or the intracellular compartmentalization were found. GLUT4, protein, and mRNA were raised in AdCMV-MGP-treated cells, suggesting pretranslational activation. GLUT4 was immunodetected intracellularly with a perinuclear predominance. Culture in glucose-free or high-glucose medium did not alter GLUT4 protein content in either control cells or AdCMV-MGP-treated cells. Control and GP-overexpressing cells showed similar autoinhibition of glucose transport, although they appeared to differ in the mechanism(s) involved in this effect. Whereas GLUT1 protein increased in control cells when they were switched from a high-glucose to a glucose-free medium, GLUT1 remained unaltered in GP-expressing cells upon glucose deprivation. Therefore, the increased intracellular metabolic (glycogenolytic-glycolytic) flux that occurs in muscle cells overexpressing GP causes an increase in GLUT4 expression and enhances basal and insulin-stimulated glucose transport, without significant changes in the autoinhibition of glucose transport. This mechanism of regulation may be operative in the postexercise situation in which GLUT4 expression is upregulated in coordination with increased glycolytic flux and energy demand.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3